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ABSTRACT

The use of a particular two-vector formalism to describe the mass-energies and
momenta of point-like particles allows the existence of two basic particle types:
photons and nonphotons, the speeds of the latter being less than photon speed. Invoking
the requirement of likekind vector additivity in a preferred inertial frame (that in which
the microwave background photons appear isotropic) suggests a symbiotic coexistence of
the two types where the death of one type gives birth to the other. Since nonphotons are
born from the fusion of photons, it is assumed that Bose-Einstein statistics determine the
particle densities in an equilibrium mix of the two types. Equilibrium densities are
derived on the basis that particle energies in the preferred frame be integer multiples of a
tiny quantum €. This yields the Planck curve for the photon spectrum and extends this
curve into a surface defining the spectra of nonphotons. Photon densities are found to be
smaller by a factor of ~e/kT than those of the ethereal nonphotons. The small value of ¢
relative to the energies of photons in the T=2.73°K preferred frame allows an explanation
of photon redshift in a non-expanding universe. This type of redshift also allows one to
understand why an accelerating cosmos is implied should one assume Doppler effects are
the only cause of redshift.

The ethereal nonphotons may play multiple roles in an infinite and static photon-
nonphoton universe. Besides giving microwave background photons “something to be in
equilibrium with”, they may act to maintain the photon-like constituents of electrons,
protons and neutrons in dynamic equilibrium as they move inside thin string-like annular
regions; and, they may collide elastically with these photonic constituents of weighable
bodies to explain the Newtonian gravity acting between such bodies. It is also noted that
nonphotons might play a role that mimics that of some form of “dark matter” and
another role that mimics a repulsive gravitational force between bodies made up of
photonic constituents.

The likely value of € and other features of a photon-nonphoton universe model are
estimated, and experiments to test aspects of such a universe are suggested. The model
leaves room to utilize the useful features of existing theories while simply avoiding the
singularities yielded by solutions to continuum-type theories.
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I. INTRODUCTION AND SUMMARY

An unconventional concept of the universe emerged in the course of a
series of studies conducted since 1949 (Refs.1 through 10). Our purpose
here is to combine the various papers on those studies into a single document
to describe more efficiently the emerging universe model. We have come to
refer to that model as the “photon-nonphoton universe”.

A primary difference between the photon-nonphoton universe model
and the conventional big bang models is that the latter considers an
expanding universe while the former assumes a static universe. A big bang
universe is presumed to be born from an energy-density singularity and to
evolve through an inflationary epoch to achieve its present cosmological-
scale uniformity. In contrast, if viewed on the grandest cosmological scale,
the photon-nonphoton universe would always be seen to have a uniform
density of constituent entities. Both types of models conform with certain
observations, (e.g., a dark night sky and spectral Doppler shifts). However,
the two types of models differ strongly in addressing puzzles raised by
recent observations. For example, the static model explains strong redshifts
without imposing the need for an accelerating expansion of a big bang
universe. Such differences are noted in the body of this document, the

contents of which we now summarize in brief.



In Section II, we describe a two-vector formalism used to define the
properties of the point-like particles assumed to make up all things in the
universe. Formalism vector-length is defined in terms of a particle’s mass-
energy and momentum, which transform from one inertial frame to another
according to the prescriptions of special relativity. And, these prescriptions
thus define the formalism vectors appropriate to any particular frame.
Photon-like particles have formalism vectors, E and B, that are equal in
length. Particles with |E| # |B] are called “nonphotons”; particles which have
invariant rest mass and cannot be seen to move at photon or greater speeds
in any frame according to the two-vector formalism. Because of certain
limited similarities to the field vectors of electromagnetism, E and B are

<.

sometimes referred to as a particle’s “electric” and “magnetic” vectors,

respectively.

In Section 11I, we turn our attention to particle fusion and fission
events in a “preferred” inertial frame, referred to as the “universe frame”. In
that frame, the microwave background photons are seen to move
isotropically and to have a T = 2.73K Planckian energy spectrum. In the

universe frame, we postulate conditions that particle formalism-vectors must



satisfy if a pair of particles are capable of fusion or if the converse fission
event may occur. Basically, the postulate requires that—in the universe
frame—the E and B vectors of the fused particle be the sums of the like-kind
vectors of the two incoming particles. And, a fission breakup of the fused
particle represents the converse event. In other than the universe frame, this
“law” for fusion or fission is expressible in terms of the observable velocity
of such a frame relative to the universe frame. A possible expeniment to
determine a frame’s relative velocity is described in Appendix A. And, the
transformed fusion-fission postulate is examined in Appendix B. Since the
universe frame offers the simplest examination of the fusion-fission
processes, in Section I11 we consider these processes in that preferred frame.

It is shown that in the universe frame a nonphoton can only be formed
by the headon meeting of photons with properly oriented formalism vectors
and that subsequent fission would return the same photons to the universe.
Also, it is shown that two equal-velocity particles with the same dominant
formalism vectors properly oriented are capable of fusion; and, the converse
fission process may occur.

We conclude Section 1If with brief remarks on spontancous and
photon induced fission of a nonphoton and on certain allowed and

disallowed interactions between particle pairs.



Section 1V considers systems of photons and nonphotons in
equilibrium. Since the universe frame has the characteristics of the uniform
and isotropic phase space underlying conventional determinations of particle
densities, we follow the usual pathway to determine those densities in that
preferred frame. And, since two photons (bosons) fuse to form a nonphoton,
we utilize Bose-Einstein statistics in determining the densities of photons
and nonphotons in an equilibrium mix. In order to work with countable
energy states, as required for a statistical analysis , we postulate that—in the
universe frame—each particle’s energy equals an integer times &, a tiny
quantum of energy. Following the approach used by Bose in developing the
curve representing Planck’s photon spectrum, we extend this curve into a
surface which represents the spectra of nonphotons as well as photons,
(Figure 6).

The photon number and energy densities are essentially independent
of ¢ if e<<kT, a condition readily satisfied by a T = 2.73K photon-
nonphoton universe model, (Section VII). The ratio of the nonphoton-to-
photon densities is of order of kT/s, a number of order 10”” according to our
Section V11 findings. However, even though the nonphoton densities dwarf

the photon densities, the average energies for these two particle species are



comparable, being ~107 eV for the T =2.73K universe. The speed of the
average nonphoton is seen (in the universe frame)tobe |1 — (3n/ ]6)2]'/’
= 0.81 times photon speed (Table I). Useful properties of the average
moving nonphoton are expressed as functions of kT/e in Section 1V. That
section includes a listing of connections between certain fusion-fission
event-probability parameters (e.g., event microscopic cross sections and
nonphoton spontaneous fission probability per unit time) that are derived in

Appendix C.

In Section V, we show how photon redshift may occur in a static
universe. Basically, as a photon emitted from a source travels to a detector,
the tiny £-quanta of the source photon are progressively lost via fusion with
the quanta of microwave background photons. Half of the mass-energy of
the tiny nonphoton debris equals that lost by the redshifted source photon.
For small source-to-detector distances, this type of redshift is roughly
proportional to distance. At large distances the redshift tends to increase
exponentially with distance. Thus, a dark night sky is assured in an infinite
static universe that is uniformly populated by photon sources. [t is noted that

if the near-exponential increase of redshift at large distances is used to



compute a speed via the Doppler equation, the results might be interpreted as

an acceleration of the rate of expansion of an expanding universe.

In Section VI, we assume the bodies in solar-type systems present
very thin targets to the ethereal nonphotons of 2.73K space. On this basis, it
is demonstrated that the Newtonian gravitational force between bodies can
be understood in terms of elastic collisions of the space nonphotons with the
photon-like particles (photonics) making up such bodies of weighable
(ponderable) matter. To accomplish the demonstration, the ethereal
nonphotons and the photonics making up ponderable matter are represented
by the average of each species. It is suggested that the generalization of
Newtonian gravity to that of general relativity may result by going from thin
to thick-target bodies in which each nonphoton might experience multiple
elastic collisions with a body’s photonic constituents.

To start, the force on the photonics in a unit volume of a body of
ponderable matter under bombardment by a beam of nonphotons is
developed. That force is proportional to a defined function, f(y), where y
represents the ratio of the momentum magnitude of a photonic to that of a
nonphoton. If nonphoton gravity is to equal Newtonian gravity, we found

that the quantity A2 x (kT/e) x f(y) must equal a quantity proportional to



the gravitational, constant G —— — the constant of proportionality being fixed
by known properties of nonphotons (Eq. (95). The A quantity represents the
average number of gramsicm’ of ponderable matter through which a
nonphoton travels to experience its first elastic collision with a photonic.
We assumed the uncertainty in the measured value of G is the result of
second collisions in sun-like bodies. An uncertainty of one part in 10’
(Ref. 13) corresponds to our assumed A-value of 10" grams/cm’. This left
the model’s “central parameter” K = kT/e and y to be determined.

The parameter, K, is determined by use of the photonic ring model
developed to represent the electron, proton and neutron and their
antiparticles. Those models are explained in Appendix D, which builds on
our 1949 considerations of such models (Appendix E). A photonic ring
model of a nucleon, which conforms with a nucleon’s mass and angular
momentum, must be very thin relative to the ring radius for a A-value of 10'°
grams/cm’. The ratio of ring-thickness to ringradius must be ~1077 if
solar type bodies, consisting mostly of nucleons, are to represent thin targets
to nonphotons. And, if the ring surface perfectly reflects nonphotons so as
to confine a nucleon’s photonics in a state of dynamic equilibrium, the

pressure felt by the surface must be of order of 10®* dynes/cm”. This large



pressure requires a value of K =kT/e ~10""; and, thus, a tiny ¢ quanta of
order 107! eV.

By use of the A and K values, computed as above, and the necessary
condition expressed by Eq. (95) for nonphoton gravity to equal Newtonian
gravity, we obtained a y value of ~107" via the known f(y) function. This
completed our demonstration that Newtonian gravity could be understood in
terms of elastic collisions between 2.73 Kelvin space nonphotons and the

photonics that make up the thin-ring constituents of weighable matter.

In Section VII, we utilize the values of the trio of parameters, A, K
and vy, yielded in our Section VI nonphoton gravity study. Those values
permit us to define features of an emerging model of a photon-nonphoton
universe. The e-quanta constituency of the average nonphoton and the
average photonic become definable. And, the photonic constituency of the
electron, proton and neutron becomes definable (Table 2). The list of
nonphoton features includes their number and inertial-mass densities, their
directional flux and the large pressure felt by surfaces that perfectly reflect
them. The list of photonic-related features includes their average energy

and—if not neutral—their electrical charge.



With A, K and v values in hand, we become able to estimate the
microscopic cross sections for the interactions between pairs of particles
(e.g., the elastic collision of an average nonphoton with an average photonic
constituent of a ponderable particle such as the electron, a nucleon or a
photon). Also, the “redshift cross section” for the headon fusion of a pair of
e-quanta photons becomes definable. The mean free paths for each of the
above two-particle events are determined by use of the associated

microscopic cross section.

In Section VIII, we briefly recall the path followed toward a
construction of a photon-nonphoton model of the universe. Rationale for
following that particular path is reviewed. How the model may answer
questions raised by fairly recent observations is discussed. Also, we note that
nonphotons may mimic the effects generally attributed to some form of dark
matter and mimic the existence of a repulsive gravitational force. (Appendix
F presents a brief discussion of such nonphoton roles.) And, a few possible

experiments to test aspects of the model are noted.



II. PHOTONS AND NONPHOTONS
All things in the universe are assumed to be made up of point-like
particles that obey the laws of special relativity. That is, we assume that a
particle’s properties seen in one frame relate to those seen in a second frame
according to the frame-to-frame transformation prescriptions of special

relativity.

A two-vector formalism is employed to define the values of certain
particle properties (e.g., velocity, inertial mass and momentum) as these
properties would be seen in a frame of interest. These vectors are denoted
by E and B and their lengths by E and B*. At least one of the vectors has a
non-zero length; and, if both are non-zero, the two are perpendicular. In
either case, a particle’s formalism vectors satisfy

E*B=0. (H

In terms of the formalism vectors, in units of c (the speed of light), a

particle’s velocity is given by

=2 ExB/ (E*+ BY). (2)

*Because of certain similarities between our formahsm vectors and electromagnetic
field vectors, we sometimes refer to E and B as the “electric” and “magnetic” vectors

respectively.
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Because of the normality requirement of Eq. (1), the particle’s speed is
expressed by
G =2 EB/(E*+ B (3)
Thus, in accord with special relativity, the formalism limits particle speed to
the range of 0 <P <1.
The formalism expresses a particle’s inertial mass in units of &/c’,
where € is a tiny unit of energy, by
w =EE + BB =E’ + B’ (4)
In units of ¢/c, we denote a particle’s momentum by P. From the definition
of momentum, we have
P=mB=2ExB. (5)
Thus, 1n units of &/c, the magnitude of a particle’s momentum 1s
P =mp=2EB. (6)
It is noted that the formalism recogmzes two distinct particles with the
same inertial mass, m, and momentum-magnitude, P. This follows since m
and P are not changed if we mterchange the values of E and B. In terms of
m and P, the vector lengths of these two particles are given by
E=(122) Vm+P) £ V(m-P)] (7

and B = (12) N(m+P) ¥ V(m-P)]. (8)

11



According to special relativity, in going from frame S to frame S', a
particle’s inertial mass and momentum-magnitude transform from m and P

tom' and P'. In terms of S-frame quantities m' is given by

m' = (m - a P cos y)V(1 — o?): (9)
m' and P’ satisfy

@Y - @Y=’ -P’ = m, (10)
and P'sin y' =P sin y. (1)

Above, a is the length of the vector @, which is the uniform velocity of S'
relative to S in units of ¢; W is the angle between a and P; m, is the rest
mass of a particle capable of rest; and ' is the angle between a and P'. The
vectors @, P and P' are coplanar.

Of course, the 3 =1 photons seen in S have m =P; and, thus, have
m' = P"in all §' frames. In this sense, photons have zero rest mass, m,, and
are incapable of rest. That is, m' =P in all frames; whence, photons are seen
to move at B'c = (P'/m'") ¢ = c in all frames according to the special relativity
feature expressed by Eq. (10).

Since a particle’s inertial mass and momentum magnitude are seen to
be different in S and S, its formalism vector-lengths will also differ in the
two frames. The lengths appropriate for S' are, of course, obtained by

writing m' for m and P' for P in Eqs. (7) and (8). The lengths transform

12



from S to S' so as to satisfy the invariance of m,. That is, via Egs. (4), (6)

and (10), it follows that

E4 _2 E2BZ + B4 — (Er)4 ) (E|)2(Bv)2 + (Bv)4 - mo;z. (12)

As evident from Egs. (3) and (12), if E=B, then § =1 and
m, = 0; and, we regard the particle as some kind of photon. The formalism
also allows “nonphotons”, particles with E # B. The nonphotons have p
values in the range 0<fp<] and have m>0. As a consequence of special
relativity transformations, photons “are seen” as photons; and nonphotons
“are seen’” as nonphotons in all inertial frames.
In what follows, we use the notations E, B to identify a particle with
formalism vectors E and B. Figure 1 illustrates vector configurations that
may serve to represent photons and nonphotons, the two classes of point-like

particles assumed to make up all things in the universe.
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Type of Particle E>B E=B E<B
E
Photon
B
B=1)
(E, B)
. E E
Moving
B B
c 0<B<1)
<) (E, B) (E, B)
L
=
S - \
Stationary E-0
B=0 >—0—»B
(B=0)
(E, 0) (0, B)

Salonov, universe, fig1-4

Figure 1. Particle Vector Representations and (Symbols).
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II1. PARTICLE FUSION AND FISSION

The existence of a “preferred” inertial frame enables us to construct a
photon-nonphoton model of an infinite universe. Observations have shown
that the photons of the microwave background in the preferred frame are
seen to be essentially of uniform density, to move isotropically and to
exhibit a T = 2.73K Planckian energy spectrum. Here, we refer to that frame
as the “universe frame”. Observers in frames that move at a velocity ac
relative to the universe frame will see the microwave background photons
to be anisotropic. And, on the basis of such observations they will be able to
determine their frame’s “a-signature”. A discussion of a particular
experiment that might be used to determine a frame’s a-signature is found in
Appendix A. Below we consider certain interactions between photons and
nonphotons as such would be viewed in the @ = 0 universe frame. How
these events would appear in an @ # 0 frame is discussed in Appendix B.

We postulate that, in the universe frame, the formalism vectors of the

three particles E,B, e,b and & 3 must satisfy
E+te=¢ (13)
and B+b=38 (14)
if the first two may fuse to form the third; or, if the converse fission event

may occur.
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The formalism vectors for each of the various particles must, of
course, satisfy the normality condition of Eq. (1). This requires that
Eeb+ e*B=0. (15)
The conservation of inertial mass energy requires that
Ee + bB=0; (16)
and the conservation of momentum requires that
Exb + exB =0. )
Equation (17) tells us: (i) that Exb must be equal and opposite exB;
or, (ii) that each of these vectors must vanish. If (i), the plane of E and b
must be parallel to that of e and B. If (ii), E and b must be collinear; and e
and B must be collinear. In either case, all the vectors—E, B, ¢ and b—are
parallel to a common plane, to which & and B must also be parallel
according to Egs. (13) and (14). Hence, we may draw the formatism vectors
of two moving particles that are capable of fusion in the plane of the paper
as shown in Fig. 2.
In terms of the formalism’s vector-lengths, the three necessary

conditions expressed by Egs. (15, (16) and (17) become

(Eb+eB) sin@ =0, (18)
(Ee ¥ Bb) cos ¢ =0 (19)
and (Eb = eB) cos 9 =0, 20)

16



where @ is the angle between E and e (Fig. 2). Fusion, of course, requires
that the particles move collinearily to a meeting or be in stationary or
moving contact. The upper sign in the above equations applies if the two
particles move to a headon encounter (Fig. 2a). The lower sign applies if the
particles fuse while moving codirectionally (Fig. 2b) or while seen to be

stationary in the universe frame.

For the headon encounter case, Eq. (18) can only be satistied it ¢ =0
or @ =7 In this case, Egs. (19) and (20) can only be satisfied if E = B and
e = b. That is, for headon fusion, both E,B and e,b must be photons. The
particle formed by fusion is a nonphoton with >3 if ¢ = 0 (Fig. 3a) or
with B> if ¢ = nt (Fig. 3b). In units of &, let N and n (<N) represent the
energies of the two photons. In terms of these photon energies, the

properties of the nonphoton formed by their fusion are given by

< =V(N/2) + V(n/2) 21)
B=VIN2) F V(n/2) (22)
M= (N+n) (23)
P = (N-n) (24)
B= (N-n)/(N +n) (25)

17



and M,=2(Nn). (26)
The upper sign applies if ¢ = 0 and the lower if ¢ = .

The formation of a nonphoton of mass-energy /4 and momentum P
via the headon fusion of a photon pair requires that the photons have the
unique energies

N= (s +D)V2 (27)

and n={M-P)2 (28)
and be oriented with @ = 0 or ¢ = n. Conversely, the only antidirectional
pair of fission products that can emerge from the fission of the said
nonphoton are the photons with the above energies. The pair of photons
always leaves the fission scene antidirectionally along a line. This lme
coincides with that traveled by a moving nonphoton. [f a nonphoton 1s
stationary, two equal-energy photons may leave the fission scene
antidirectionally along any line in the plane normal to the nonphoton’s one
formalism vector. Thus, the headon fusion of unequal-energy photons and
their subsequent rebirth via fission serves to delay photon passage through
~aregion. And, the headon fusion of equal-energy photons may serve to

redirect photerr motion.
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Where E,B and e,b are seen in the universe frame to move
codirectionally, Egs. (19) and (20) require that ¢ = + 71/2 if the particles are
to be capable of fusion, (Figures 4a and 4b). Satisfaction of Eq. (I8) then
requires that E/B = e/b. This tells us two things: (a) according to Eq. (3),
the codirectionally moving particles must have the same speed; and, (b) if
nonphotons, the particles must have the same dominant formalism-vectors.
Since two separated particles moving along a line at the same velocity
cannot meet to fuse, it follows that fusion requires that the two move in
contact as one or be in stationary contact. In terms of the common particle-
speed, B, and the mass energies, N and n, of the fusing particles, the
properties of the particle formed by fusion are given by

S = (12)[N(1+B) £V(1- B)] V(N+n), (29)
B = (112)[N(1+B) F V(1-B)] V(N+n), (30)

M= (Ntn), (31)
P =B(N+n), (32)
and Mo= (N+n)V(1 - 7). (33)

Above, the upper sign applies if electric vectors dominate and the
lower if magnetic vectors dominate.

In the case of the fusion of stationary or codirectionally moving

19



particles, it is evident that all particle pairs with (N + n) =/# can

fuse to form the same single particle. Conversely, the single particle

of mass-energy M can fission into the number of pairs for which
(N + n) = M. That is, in contrast to the case of the fusion of
antidirectional photon pairs, the same large /M particle can be formed

by a variety of pairs of codirectionally moving particles.

The above rules governing fusion/fission of codirectional
particles in the universe frame, allow one to regard the particle of
speed B and with a mass-energy equal to an integer N as an ordered
assembly of N fusible, unit-energy particles. In terms of [, the
electric and magnetic vector-lengths of each of the N units would be

e=(1/2[N(1+B) £ V(1 - P)] (34)
and b= (1/2)[V(1 +B) F V(1 -B)], (35)
respectively. If the composite particle’s electric vector dominates, the
upper sign applies; otherwise the lower applies.

Consider a system of N identical particles, each with a mass-
energy of unity and each moving in the same direction with a
momentum of B (recall € and &/c are our units of energy and

momentum). A single particle with mass energy N that moves in that
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direction at speed B, of course, has the same momentum, BN, as the
system of N particles. If all particles have the same dominant
formalism-vector, the lengths of the single particle’s vectors, E and B,
are related to those of the system’s units, e and b, by E = eVN and
B=bVN, where e and b are given by Egs. (34) and (35).

Imagine the electric vectors of the N units are connected in a
head-to-tail fashion to form a chain of links. Let the two ends of the
chain be separated by a distance of eVN. Independent of the
orientations of the links of our Ne-long chain lying on a plane, the
equalities of the system’s and the single particle’s mass-energy and
momentum hold. However, for arbitrary orientations of the links, the
system’s units are not fusible into the single particle under
consideration.

A necessary condition for fusibility is had if the orientations
satisfy a certain rule. Let us number the units I, 2, 3...., 1....., N.
Fusibility requires that unit-i’s link makes the angle sin’'(i-1)™* with
unit-(i-1)’s link—the direction of unit-i’s link being taken as a
reference direction. Figure 5 shows the orientations of the units in a
fusible system of N =5 units that meve at speed f = 3/5. For a fusible

group, it is noted that the lengths of the electric (magnetic) vector of
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the particle resulting from the progressive fusion of units number |

through i is eVi (bvi).

Two types of nonphoton fission into antidirectional photons
may be assumed to be allowed: spontaneous fission at a rate
unaffected by the presence of photons; and, photon-induced fission.
This latter type may be considered to result from the close collinear
passage of the nonphoton by a “photon twin” of either of the two
photons that could have fused headon to form the nonphoton. The
induced fission event does not violate any of the above rules since it
may be regarded as two independent processes. One, the twin photon
approaches, passes and then leaves the fission scene without any
change in its defining (formalism) vectors. Two, the nonphoton
fissions while obeying all the rules (i.e., the fission occurs as if it were

spontaneous).

We conclude this Section by remarks on certain forbidden and
allowed interactions between two particles. Writing b=0ore=0 in
Egs. (18), (19) and (20), one finds that their solution requires an

absurdity—namely that sin ¢ = cos @ = 0. Thus, fusion of a stationary
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nonphoton with a moving particle is forbidden. Similar reasoning
leads one to conclude that the fusion of a stationary “electric”
nonphoton with a stationary “magnetic”’ nonphoton is forbidden. It
may also be noted that reversing the direction of only one of the two
formalism vectors changes a particle’s vector momentum; and, in this
sense, is forbidden. Of course, reversing the directions of both of
these vectors does not change a particle’s mass energy or momentum;
and, 1n this sense, is allowed. Finally, it may be noted that the fusion-
fission formalism of Egs. (13) and (14) in no way closes the door on
allowed elastic collisions between two particles. We exploit such

allowed events to explain Newtoman gravity in Section VI
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Salorov, universe, fig1-d

Note: Positive @ measured clockwise from indicated reference lines.

Figure 2. Vector Orientations of Collinear Neutral Particles.
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Figure 3. Illustrating Allowed Fusion of Antidirectional Photons.
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Note: E/B=e/b=&/& =3/2; and, all particles move at § = 12/13.

Figure 4. Illustrating Allowed Fusion of Codirectional Particles.
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IV. PHOTONS AND NONPHOTONS IN EQUILIBRIUM

A. Particle Density Equations

Since photon fusion deaths give birth to nonphotons and nonphoton
fission deaths give birth to photons, one is prompted to examine an
equilibrium mix of these two basic particle types. The photon component of
the mix must obey Bose-Einstein statistics to lead to the Planck photon
spectrum, a fact which suggests that we assume the same statistics for both
the photon and nonphoton components. A statistical analysis requires one
to think in terms of countable energy states of the particles. This
requirement is readily met by asserting that particle energies must be
integer-multiples of a very small energy quantum, €. Such an assertion
seems plausible since, as demonstrated below, it leads to the correct photon
spectrum. The previously defined universe frame has the characteristics of
the uniform and isotropic coordinate-momentum phase space underlying
conventional determinations of particle densities. Accordingly, we have the
conditions in that frame to execute the usual steps leading to particle
densities in an equilibrium mix. It will be noted that, to derive the photon
and nonphoton densities, we follow the approach used by Bose in

arriving at the Planck photon spectrum (Ref. 11).
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In units of g, let m be the mass-energy of the particle that could be
formed by the headon fusion of a photon of energy n with one of energy
N(=n). In units of &/c, denote the particle’s momentum by i=(N-n)=(m-2n).
Note that n=0 corresponds to photon-particles and that n#0 to nonphotons.
One utilizes all of phase space if one assigns to the subgroup of particles,
identified by the integers m and n, that portion of phase space given by

V=2 {V-(41/3)-(e/c)’[(i+V2)*-(1-8)(i-¥5)’] }; i = 0. (36)
Above, i=(m-2n) is the momentum of a particle in the subgroup; V is the
coordinate volume in which the particles are located; and, & is the
Kronecker delta. It is necessary to double the bracketed quantity since, in
general, the two-vector formalism recognizes two distinct (neutral) particles
with the same mass-energy and momentum (Egs. (7) and (8)). In terms of m

and n, Eq. (36) becomes
V= V-8n(e/c) [(m-2n)*+(2-65mA] , (37)
where A=1/24.

Following Bose, let gnn represent the number of cells of size h’=

(Planck’s constant)’ per unit of coordinate volume. This number is given by

gmn= V/Vh’ = 8n(e/hc)’ [(m-2n)*+(2-85)A] . (38)
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On the basis of the assumed Bose-Einstein statistics, one obtains
Frn= (2ma)(€™*-1) = 8n(e/he)’ - [(m-20YH2-52)A] /(e™™-1)  (39)
for the number-density of the particle group identified by a particular pair of
m and n integers. Above, k is Boltzmann’s constant and T the system
temperature as measured by a classical monatomic gas thermometer.

Other particle densities of interest are the mass-energy density,

Unn=¢emFp,; (40)
the rest-mass energy density,

Una= 2e{V[n(m-n)]} Fun; (41)
and, Uso= Unn -Un o= £{m-2\[n(m-n)] } Fmn , (42)

the “kinetic-energy” density.

B. Photon and Nonphoton Mass-Energy Densities

To derive Planck’s photon spectrum, one writes n=0 in Eq. (40),
which gives Upo= 8mg(e/hc)’ - m’ [1+Q2A/M3)] /(e™*-1) ; m=21  (43)
for the energy density of photons of energy me. Writing dU for Uy,
hv=h-(photon frequency) for me; hdv=[(m+1)e-meg] for €; and neglecting
2A/m? relative to unity, one obtains

dU/dv = 8rn(hv’/c’)/(e™*"-1), (44)
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which is the Planck photon spectrum.

Figure 6 shows the mass-energy densities of all the m,n-subgroups.
Planck’s photon curve (n=0) is shown adjoining a surface labeled the
“moving nonphoton surface”. Closely spaced points on that surface
represent the mass-energy densities of the moving nonphotons seen in the
universe frame. The surface lies between the photon curve and the
stationary nonphoton curve, which indicates the relatively low mass-energy
densities of the stationary nonphotons seen in the universe frame.
Stationary nonphoton mass-energy densities are given by Eq. (40) written
with 2n=m. And, if 2<2n<m, that equation gives these densities for the
moving nonphotons.

Figure 7 displays particle mass-energy density as a function of m and
particle speed, B. The nonphotons in an m,n-subgroup move, relative to
the universe frame, at B=(N-n)/(N+n)=(m-2n)/m. Thus, neglecting 2A/m’
relative to unity, the mass-energy density of a nonphoton is B’ times that of
a photon of the same energy. Since m and n are integers, particle speeds do
not--rigorously--form a continuum. However, at mass-energies much greater

than €(i.e., nottoo far below kT), particle speeds are so closely packed
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as to well approximate the continuum implied by Fig. 7. The mass-energy
density of a stationary nonphoton is very small relative to a photon of equal

energy, but not zero.

C. Features of the 2.73K System

Summing Egs. (39) through (42) over the appropriate range of n and
m values, one obtains the densities of the photon (n=0), the moving (m>2n)
and the stationary (m=2n) nonphoton populations. The results of such
summations for a 2.73K mix of photons and nonphotons seen in the
universe frame are shown in Table 1. As there noted, the entries are based
on the assumption that e/kT<<I.

Provided €/kT<<I, the properties of the photon population are
essentially independent of the €/kT ratio. However, it is seen that the moving
nonphoton densities are of order kT/e larger than those of photons. That is,
the moving nonphoton densities are found to dwarf those of photons by order
kT/e; but, the average mass-energies of the two particle types are found to be
comparable. As noted at the bottom of Tablel, the average kinetic energy of
the great-majority particles (the moving nonphotons) is found to equal,

approximately, the classical average of “hard sphere” atoms. The stationary
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nonphoton densities are found to be of order (e/kT) or (e/kT)’ smaller than
the photon densities.

As seen in the table, the moving nonphotons have an average rest
mass energy equal to 3m/16 times the average of their mass-energies.
Writing P = am in Eq. (10), one finds that a nonphoton with these average
properties would move at speed ac, where « satisfies V(1—a?) = 37/16. That
is, the average 2.73K space nonphoton moves at a relativistic speed of
a = 0.81 as noted in the fifth row of Table 1. The table also shows that the

average mass energy of moving nonphotons is (I4/I3)(kT) which equals

~0.9x10eV for T = 2.73K.

A knowledge of the speed and mass-energy of the average moving
nonphoton permits one to relate the energies of the two photons that would--
via fusion--form such a nonphoton to the central space parameter, kT/e. By
use of Egs. (23) and (25) and Table 1 entries, we find that the average 2.73K
space nonphoton would be formed by fusion of photons with energies Ae
and ag, where

A =(1/2)(1+a) - (1/15) - (kT/e) (45)

and a= (1/2)(1-a) - (/L) - (KT/¢). (46)
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Other useful properties of these nonphotons that depend on the central

parameter are their number density

D=n" (kT/¢), (47)

their mass-energy density
poc” =n(kT) - (Is/1y) - (KT/e); (48)

and their directional flux
® = (acn/4n) - (kT/e); (49)
where n = (4n°/45) - (kT/hc)® = 184cm™. (50)

The pressure felt by a perfectly reflecting surface of nonphotons is given by

p = (a*/3) nuc? (kT/e), (51)
where pc® = (A+a)e = (Iy/1;) kT =0.9x10° eV (52)
denotes the average mass-energy of T = 2.73K space nonphotons.

The above, which may be obtained from Table 1 information, will be
used for our later demonstration that gravitational forces might be
understood in terms of nonphoton elastic impacts on ponderable matter
constituents.

To compare the shapes of the energy spectra of the three particle-
groups considered in Table 1, we have prepared Fig. 8. There, the
maximum mass-energy density of each particle-group is normalized to

unity. One group consists of all moving nonphotons that have the same
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mass-energy, but do not necessarily move at the same speed. The stationary
nonphotons and the photons constitute the other two groups cited in the
figure..

D. Connections between Event-Probability Parameters

In his “A/B coefficient” approach to Planck’s law, Einstein used the
label “molecule” when referring to objects that absorb and emit
photons (Ref 12). He assumed two types of emission: photon-induced and
spontaneous emission; and, he assumed this latter process to be unaffected
by the photon environment. It is noted that the nonphoton object,
introduced here, plays the same role--on a cosmological scale--as Einstein’s
undefined molecule object. That is, the loss of photons via absorption by a
molecule corresponds to the loss via photon-photon headon fusion--the
event that creates a nonphoton. And, the emission of photons by molecules
corresponds to the production of photons via nonphoton fission into
antidirectional photon pairs.

Following Einstein, we also assume two types of events yield
photons: namely, photon-induced fission of nonphotons and spontaneous
fission of nonphotons.  Adopting Einstein’s assumption that the
spontaneous process is unaffected by the photon environment, it follows

that connections must exist between  event-probability parameters
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associated with the fusion of photons and the fission of nonphotons. A
derivation of the relationships between such parameters is presented in

Appendix C. The necessary connections are found to be
1/ 0= 8nc(e/hc)’ -{ [n*+2A] [m-n)*+2A] / [(m-2n)*+H2-52)A]} Hainny (53)
b= { [(m-n)*+2A] / [(m-20)"+(2-8:2)A] }+ o (m-n) (54)
and Mmmm = {[0°+24] / [(m-20)*+2-87)A]} Hn ey - (55)
Above, the quantity [, m--n) represents the microscopic cross section for the
fusion of a photon of energy n with one of energy (m-n)>n>1 to form a
nonphoton of mass-energy m. That is, the per-unit-volume birthrate of such
nonphotons is given by F, XClymn)XFmn)0, Where the F-quantities are
given by Eq. (39). The quantity 1/1,, is the probability per unit time that
such a nonphoton will spontaneously fission into a pair of antidirectional
photons. The quantities pym and pm-n,m are the microscopic cross sections
for the fission of such nonphotons that are induced by photons of energy
n and (m-n), respectively. That is, the rate of fissions of such nonphotons
in a unit volume that are induced by photons of energy n is given by
FooXCUymXFma and the rate induced by photons of energy (m-n)
is given by F(mn)oXClhmn)mXFmn -

Since A=1/24 and since (m-n)>n>1 for nonphotons, one may--without
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appreciable error--neglect the 2A terms in the numerators of the above three
equations. Except for the stationary (m=2n) nonphotons, one may also

neglect the A terms in the denominators.
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Figure 6. Particle Mass-Energy Densities: Surface Representation.
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Table 1. Features of Particles in 2.73°K Model Universe

Type of Particles
Nonphotons (n # 0)

Particle Photons (n = 0) Moving Stationary

Property mz1) (m>2n22) (m=2n2>2)
Number Density F = L[8n(kT/hc)’] = (I;/6L)F-(kT/e) = | (A21,)F-(e/kT) In(kT/e) =

(cm?) 4.09x10? 1.84x10%(kT/e) 3.54 [(e/kT)? In(kT/g)]
Mass Energy Density | U = L[8r(kT/hc)*-(kT)] = | (1,/61;)U-(kT/e) = (AL, 21)U-(e/kT) =

(eV-cm?) 0.260 0.165 (kT/¢) 1.37x103(e/kT)

Rest-Mass Energy 0 31/16 = 0.590 1

Fraction

e

b e ——— —— —— —

Kinetic Energy 1 (1-31/16) = 0.410 0
Fraction
Speed ratio:
Particle Average 1 [1-(31/16)*]'2 0.81 0
Photon

Average of Particle
Mass Energies
(eV)

U/F = (LK) =
2.70(kT) =
6.36x10-

(L/L)(KT) =
3.83(kT) =
8.95x10

1,(kT)/In(kT/e) =
1.64(kT)In(kT/e) =
3.87x104[1/In(k T/e))

Notes:

(1) A=1/24
@)
3)

Q)

bl
]

L]
Il

~

I

&)

For T =2.73°K, (kT) = 2.35x10*eV
(e/kT)<<1

[ 5 [x(ex-1)]dx

?/6 = 1.64493

2.40410

/15 = 6.49392

24.88627

8n®/63 = 122.0808

Average kinetic energy of moving nonphotons is ~ 0.410x3.83kT = 1.57kT.

Safonov, universe lables

Compare with 1.5kT = classical average of “hard sphere” atoms.
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Safonov, universe, ig7-8

Figure 8. Normalized Mass-Energy Spectra of Photons and Nonphotons.
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V. PHOTON REDSHIFT IN A STATIC UNIVERSE

The observed redshift of light that has traveled cosmological-scale
distances is generally attributed to special relativistic Doppler effects. Being
based on special relativistic point-like particle dynamics. the photon-
nonphoton universe model, of course, also recognizes this type ot redshift.
However. we do not require that the observable universe be expanding to
explain redshift as does a “big bang” scenario. Here, we show that similar
redshift could occur in a photon-nonphoton universe that is not only infinite
but also static when viewed on the largest cosmological scale.

It has been noted that the photon of energy me. where m 1s an integer.,
may be represented by an ordered assembly of m photons. each of energy
£ (i.e.. photon quanta). This special feature--together with the fact that
rotations of a quantum’s detining (formalism) vectors about 1ts linc of motion
does not affect its energy and momentum; and. that quanta pairs may fuse
headon to form a stationary nonphoton--underlies an explanation of redshift
in the static universe model. Basically, as a photon emitted trom a source
travels to a detector--both source and detector being stationary in the
universe frame--the quanta of the source photon are progressively lost via

headon fusion with quanta of the 2.73K microwave background photons.



We refer to the quanta of photons from the source as “source quanta”
and the quanta of 2.73K space radiation as “space quanta”. The number-
density of space quanta is U/g, where U is the total energy-density of space
photons. By use of the information in Table 1, we have

Ule = R*/15) (kT/hey’ (kT/e) = (0.260/) cm” (56)
for the number-density of space quanta. Here, T=2.73K ande s meV.

On the average over time, a fraction f of the space quanta are assumed
to be moving opposite to the direction traveled by source quanta and to have
their electric vectors codirectional or antidirectional to that of any source
quantum. Thus, f-U/e represents the number-density of space quanta that are
assumed to be properly oriented for fusion with a source quantum. Now,
assume that fusion will occur if the parallel lines traveled by a source
quantum and a space quanfum are separated by 2 distance of Vio/ny, or less.
The probability per unit length of travel by a source quantum that it will fuse
with a space quantum is then given by

(VA)=f-(U/e)-o =y, -(Ule) . (57
Above, u, ;=fo plays the role of a microscopic cross section for the “headon”

quantum fusion events under consideration; and, A™' is the corresponding
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macroscopic cross section. By use of the U/e expression of Eq. (56), the
Macroscopic Ccross section expression reads
(1/A) = (87°/15) (kT/he)’ (kT/e) - . . (58)
Let m.e represent the energy of the emitted source photon and me its
energy after traveling a distancer. Since
dm = -m-dr/A , (59)
we have m=mge™ . . (60)
The above exponential attenuation of source-photon energy assures a finite
energy-density of such photons in a spacially-infinite universe which is
uniformly populated by sources. And, since m,/m=A/A, (A represents
photon wavelength), it follows that observations of rand A/A, should vield
the constant A-value given by
A=1/In (MA,) (61)
if the static universe model is to be in accord with nature.
The redshift, z, incurred by source photons in traveling the

distance ris then given by
2= (AMAo)ho= myrm-1 =" -1, (62)

or, by Z =1/A ; 1<<A. (63)
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This latter “near-in” approximation of the model’s redshift equation
conforms with Hubble’s observations which led to his law; namely,

z=(Hk) T, {(64)
where H is Hubble’s constant. Observations yield a nominal value of the
Hubble time, H™', equal to about 10'® years. This suggests a A-value of cH!
= 10" light years (~10?® cm).

With a A-value in hand, we are able to obtain a value of the
Microscopic cross section, p;; , in terms of the model’s energy quantum, € .
Via Eq. (58), one obtains

pyp = (1587} (U/A)-(he/kT) - (£/kT). (65)

In Figure 9, we display the redshift versus distance curves defined by
Eq. (62) and its “near-in” approximation, Eq. (63), which conforms with
Hubble’s law, Eq. (64). If the special relativity Doppler equation is used to
compute an implied recessional velocity of a photon’s emitter frame relative
to that of the frame of the photon’s detector, the imphed recessional velocities
would be as shown in Figure (10). That velocity would have the magnitude a
(in units of ¢) and be related to the redshift z according to

z+ 1 =[(1+a) ( (1-a)]", (66)

or, equivalently, by
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a=[(2+z) / Q+2z+2))] - z. (67)

For small z-values, a would approximately equal z; and, per Hubble’s
law of Eq. (64), the above implied recessional speeds would be proportional
to r. That is, under these conditions, the recessional speeds would correspond
to those between points of an object that was expanding uniformly. Hence,
for sources “near-in” to detectors, the implied recessional velocities would
correspond to those of a uniformly expanding universe.

The static photon-nonphoton model yields significantly larger redshifts
for “far-out” sources than does the extended linear model of Hubble’s law.
This difference may offer an explanation for the large redshifts recently
observed from very distant sources. If such observational data is used to
compute a recessional speed via the Doppler equation, the results might be
interpreted as an acceleration of the rate of expansion of a universe that might

actually be static.
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V1. NONPHOTON GRAVITY

To develop expressions for the particle densities in an equilibrium mix
of photons and nonphotons, it was not necessary to examine elastic collisions
between the ethereal nonphotons and other particles, either photons or other
nonphotons. We visualized an infinite universe where nonphotons are born
from the fusion of two photons, each with an encrgy in the universe frame
that equals an integer times a tiny quantum of energy, €. A photon of energy
N fuses with one of energy n(<N) to form a nonphoton, here identified by
those two integer numbers as (N,n). Upon spontaneous or photon-induced
fission, each nonphoton may later return to the universe the same pair of
photons that fused to form it. The model disallowed the fusion of a
nonphoton with either a photon or an antidirectional nonphoton. However,
elastic encounters between such particle pairs were not disallowed. And,
such encounters between nonphotons and photon-like particles are now
examined as a possible source of the gravitational forces felt by weighable
(ponderable) bodies.

The average moving nonphoton will be used to represent the moving
nonphoton community seen in the universe frame. Equations (45) through

(52) define several of the properties of the average moving nonphoton. Such
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a nonphoton will be denoted by (A,a), where A and a are the quantities
defined by Egs. (45) and (46). The basic constituents of ponderable matter
arc assumed to move at the speed of light and are denoted by (B,0).
“Fundamental particles” such as electrons, protons or neutrons, seen at rest in
the universe frame, will be modeled by communities of (B,0) “photonics™ that
move in circular orbits. Such photonic-ring models are developed in
Appendix D.

A. (A,a)Y{(B,0) Elastic Collisions: Definition and Momentum Change

The events to be examined involve the meeting of a nonphoton, (A ,a),
with a (B,0) photonic. It is to be understood that particle mass-energy,
momentum and mass are, respectively, in units of €, €/c and g/c’ , where ¢ is
the speed of light. To qualify as an elastic encounter, each particle must at
all times be the same entity. That is, if the particle was a nonphoton before
the collision it will be the same nonphoton after the collision; and, thereby,
be able to return to the universe the same photons that had fused to form it.
And, the (B,0) photonic maintains the energy B as it emerges from the
colliston. This definition of an elastic event assures that the two-particle
system’s mass energy is conserved, always maintaining the value (A+a+B).

Also, the magnitude of each particle’s momentum remains unchanged,
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being (A-a) and B for (A,a) and (B,0), respectively. And, of course, the
rest-mass of (A,a) remains at 2\/(Aa) and that of the photonic,(B,0) is zero
throughout the collision event. Only the directions moved by each particle
may be altered by their elastic encounter; and, such alterations must
conform with the conservation of the two-particle system’s vector
momentum.

The system’s precollision, triangular, momentum-vector diagram is
shown in Figure 11. There, y represents the angle between the directions
moved by the two particles and P, the system’s vector momentum. In terms
of the lengths, (A-a) and B of the individual-particle momentum-vectors, the
length of P is given by

P =[(A-a)*+ B* + 2(A-a)B cos y]'? (68)

Imagine the precollision triangle to be rotated about P out of the plane
of the paper by the angle {. For arbitrary C the orientations of the individual-
particle momenta in the rotated figure then represent the directions of the
outgoing particles’momenta compatible with the conservation of system
momentum. As the triangle is rotated, the point 0 of Figure 11 generates the

circle of radius p shown in Figure 12. That radius is given by

p(v) = [(A-2)B (sin y)}/P (69)
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The vector 00’ (Fig. 12) represents the change in momentum experienced by
(A,a) if the post-collision plane makes the angle  with the precollision
plane; and, 0’0 is the change experienced by (B,0). The magnitude of these
equal and opposite changes is

00" = 2p sin ({/2) (70)

If all C-values are equally probable, the average change in each
particle’s momentum is representable by a vector in the plane of the
precollision triangle (Fig. 11). The vector, representing such an average is
normal to P and its length is given by

2N
g{[}-’-p sin (G/2)] - [sin (§/2)] (dC/2m) = p(y), (71)
where p(y) is defined by Eq. (69).

B. Force on Targets of (B,0) Particles under Bombardment by a Beam

of (A,a) Nonphotons:

Consider a flat thin target of thickness t and area S. The target contains
isotropically-moving and uniformly distributed (B,0O) particles. A mono-
directional beam of (A,a) nonphotons flows into the target normal to its
surface of area S. Let I denote the “current-density” of beam particles (i.e.,
the rate that beam particles cross a unit area normal to the beam’s direction

of flow). Let D denote the total number-density of the (B,O) particles in the
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target and D/2 the density subject to first-hits by (A,a)’s. Our objective is to
determine the force felt by the community of target particles (in a unit
volume of target) as a result of first hits by the nonphotons of the beam.

The incremental collision rate, associated with (A,a) hits on those
(B,0) particles moving in directions dy about y (see Fig.11), is given by
I-S-o(y)-(D/2)t:(1/2) (siny) dy. Here, o(y) is the microscopic cross section
of (A,a)-(B,0) elastic collisions. To obtain the net force felt by all the (B,O)
particles in a unit volume of target, one multiplies by (¢/c)-p-sin6; divides by

S-t; and, integrates over all  values. Since,

sin © = B (sin y)/P (72)
one obtains
¢
F= (1/2)-(e/c)'1(D/2)-(A-a) | (y)[B/P]* sin’ydy. (73)
(o}

for the force felt by the (B,0O) photonics in a unit volume of the target
particles

A single photonic would move in a straight line through the isotropic
nonphoton flux in the “zero gravity” regions of the universe frame if we
take o(y) = o - siny, where o is a constant. For this particular form of o(y),

Eq. (73) may be expressed as
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F=(1/4)-(¢/c)-1-D(A-a)-c-f(y). (74)
Above, y is defined by
v = B/(A-a), (75)
which is recognized as the ratio of (B,0)’s momentum magnitude to that of
(A,a). The function, f(y), is given by

Ny
) =7 | sin'y [1+ 42y cosyl " dy.  (76)
fo)

Special features of this function are

f(y) = Bu/8)y; v’<<l, (77)
f(1)=n/4 , (78)
and f(y) = 3n/8); y*>>1 . (79)

C. Space Nonphotons as a Cause of Gravitational Force

Here our objective is to demonstrate that Newtonian gravity could be
the result of impacts of 2.73K space nonphotons on the (B,0) photonics of
ponderable matter. Our task is to relate the properties of average space
nonphotons, (A,a), and of average ponderable matter photonics, (B,0), to
parameters which define a photon-nonphoton universe and also conform
with Newton’s prescription for gravitational forces. A “central parameter”

is the very large number, K, defined by

K = (kT/e), (80)
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where T = 2.73 Kelvin and & (<<kT=2.35x10™ ¢V) is a tiny quantum of
energy. The dependence of nonphoton quantities on K is given by Egs (45)
through (52). As previously noted, the a quantity appearing in those
equations is the speed of the average moving nonphoton (as seen in the
universe frame) in units of ¢; its value is given by
a=[1-(3n/16)]" = 0.81. (81)
To develop the dependence of ponderable matter quantities on K and
other parameters compatible with Newtonian gravitational forces, we will
refer to Figure 13. There, two spheres of weighable matter are shown
embedded in the infinite sea of the (A,a) nonphotons of 2.73 Kelvin space.
The number density of (A,a) is everywhere—both inside and outside the
spheres—equal to D(A,a). Also, each sphere contains the (B,0) particles that
make up its ponderable matter. The number density of (B,0) in the sphere of
mass M and radius R is
Du(B,0) = [Mc'Bg] - 3janR>, (82)
and, that of the sphere of mass m and radius r is
Du(B,0) = Jmc'Be] - 34xnr’ . (83)
To derive Newton’s law, we require that all bodies—in systems which

the law describes with reasonable accuracy—are very thin relative to the
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mean-free path for (A,a) collisions with (B,0O) particles. This means it is
sufficient to consider the spheres to be very small relative to the distance, L,
between their centers*. Under these conditions, the solid angles subtended
by one sphere at points of the other are well approximated by
Qu = nr/L? (84)

and Q. =nRYL% (85)
These solid angles are shown in Figure 13.

In the absence of one sphere, it is evident that the other would feel no
net force due to the uniform bombardment from all directions by (A,a)
nonphotons. Only spherically-symmetric compressive forces would arise
throughout the interior of an isolated sphere. With two spheres of
ponderable material present, each is shielded, to some degree, by the other.
This results in a net force felt by each that pushes it toward the other. Let us
first derive the magnitude of the net force felt by M due to the presence of m.

If the mean free path in space, A, for (A,a)-on-(A,a) collisions is large
relative to L—as‘ we must assume—then the essentially monodirectional

current density of (A,a) that flows within Qy into M would—in the 'absence

*That is, if Newton’s law applies to incremental portions of large bodies, it will also
apply to the large bodies themselves, provided the latter present very thin targets to space
nonphotons.
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of m—be ®Qy where ® is given by Eq. (49). In the presence of m, this
current density is reduced by scattering of some (A,a)’s by collisions with
one half of the (B,0)’s in m. The fraction scattered in the thin-target m is
[(m/2)c*/Bg] - G/(nr®), where G is a microscopic cross-section for such
scattering events. For o(y) = o - siny and assuming a body’s photonics
move isotropically, we have s = mo/4. Under these conditions, there flows

into M from the left an excess current density of
Iv =(7/8) [mc’c/Be] - [1/ar’] - ©Qu. (86)
According to Eq. (74), the force felt by the (B,O) particles in a unit

volume of M due to its exposure to Iy, is
Fy = (1/4)(e/c) - I - [Dm(B,O)] - (A-a) - 5 - f(y),  (87)
where y and f(y) are defined by Egs. (75) and (76). Multiplying by M’s
volume, one finds the force on M due to the presence of m is
Fu = G - mM/L?, (88)
where Gy = (0*/128) - (nc*/kT) - & - [(A+a)f(y)/B’] - K>, (89)
Repeating the above sequence to derive the force on m due to the

presence of M, one finds this force to be
Fn = G - mM/L?, (90)

where Gn= G™ - 91)
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Hence, the force that pushes M toward m is equal and opposite that which
pushes m toward M. And, the magnitude of this force would equal that pre-
dicted by Newton’s law if <y equaled Newton’s G = 6.66 x 10°® dynes -
cm’- (gram)™. In this case, the three identifying numbers of (A,a) and (B,0);
the parameter K; and, the cross-section G are constrained so as to satisfy
BY/[(A+a)f(y)] = (0*/128) (nc*/GkT) - 6° - K*. (92)
We denote the average of o - siny by 6. The cross section 6 may
be expressed in terms of A, the average mass of weighable thin-ring-type
matter per unit area penetrated by a nonphoton prior to its first collision
with a photonic, and the photonic’s mass energy, Be, as
T = 2Be/c*A = (n/4)o. (93)
And, according to Eq. (52),
(A+a) = (uc’/e). (94)
By use of Egs. (93) and (94), the constraint of Eq. (92) may be expressed as
K - f(y) - 2 = 2a%/0?) - (G/npcd) (95)
In what follows, we seek specific values of A, K and vy, the three quantities
needed to complete our demonstration that gravitational forces might be
understood in terms of elastic collisions between 2.73K space nonphotons

with the photonic constituents of weighable matter.
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D. The A, K and y Parameters
We start by specifying the value of the parameter denoted by A. A

nonphoton must travel through an average of A grams/cm’ of weighable
matter to experience its first elastic colllision with a photonic constituent of
such matter. Nonphoton Newtonian gravity is a first collision concept. The
effects of second collisions are assumed to cause the uncertainty in the
measured values of G, Newton’s gravitational constant. That uncertainty is
taken to be about one part in 10°* The probability for a second collision in
the sun would be about 107 if A = 10" grams/cm?, the value of A taken here.
And, of course, such a large A-value satisfies a basic requirement of the
nonphoton gravity concept—namely that solar system bodies present “thin
targets” to nonphotons.

In addition to A, we seck the values of two dimensionless parameters.
One is K, the “central” parameter of a photon-nonphoton universe defined by
Eq. (80). The second parameter is y, which represents the ratio of the
magnitude of the average photonic’s momentum to that of the average

nonphoton, (Eq. (73)).

*According to “Physics News in 2000”, a supplement to APS News, an uncertainty of
0.0014% was reported by Jens H. Gundlach of the University of Washington at the APS
meeting in Long Beach.
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To estimate the value of K, we utilize the fact that almost all of the
mass of solar-system bodies is that of their protons and neutrons. These
nucleons will be represented by a photonic-ring model (see Appendix D).
Nucleon rest mass, M. is ~1.67 x 10 grams and the ring model’s radius, R,
is ~1.05 x 10" cm. The ring thickness is denoted by 2r, where r<<R.

We take the surface area of a nucleon ring to equal No. Here N is the
number of photonics making up a nucleon and o represents o(y) for v = n/2.
(Recall that we took o(y) to equal ¢ - siny). Thus, we have

47°Rr = No. (96)
Let 0 represent Beg, the average energy of a photonic as seen in the
universe frame. In terms of 6, N is given by
N = Mc%/s. (97)
And, according to Eq. (93), o may be expressed in terms of d by
o = (8/n) - (8/c*)). (98)
Substituting these N and ¢ expressions into Eq. (96), and solving for the
nucleon ring’s half thickness, one obtains
r=2-@AN" (M/R)=1.026 x 10°" cm. (99)
A ring’s circulating photonics will experience dynamic equilibrium if

its surface feels a pressure p that satisfies.
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pV=Mc’ (100)
where V = 27°Rr? (101)
is the volume of the ring, (see Appendix G). By use of Eq. (99), we find
the pressure required for dynamic equlibrium is
p = (@"/8)A%* - (R/M) = 0.69 x 10** dynes/cm™. (102)
In pursuit of a K-value, we assume that the nucleon ring’s surface
perfectly reflects the nonphotons that hit it. Since r<<R an essentially
isotropic flux of nonphotons bombards the ring’s exterior. The resulting
pressure felt by the exterior surface due to such bombardment is given
by Eq. (51), which—in terms of K—is
p = (0*/3) nuc’K. (103)
For dynamic equilibrium, the above p-value must equal that given by
Eq. (102). Equating the two values and solving for the central parameter K,
one obtains
K = (3n*/80?) -(\/np) - (R/'M) = 1.21 x 107 (104)
Via Eq. (80), one finds the value of the tiny energy quantum to be
e=(kT/K)=1.94 x 10 eV. (105)
To determine the value of vy, the last of the trio of desired parameters,

we first find f(y) by substituting the A and K values into Eq. (95). This yields

60



f(y) = (16/3n°) - (G/c*) - (M/R) = 6.36 x 107, (106)
For such a small value of f(y), Eq. (77) tells us that—to a high degree of
accuracy—i(y) = (3n/8) - v%. Thus, we find
v = (8/37) - [2GM/ac’R]”*=7.34 x 107, (107)

Summarizing, we took A = 10'® grams/cm’ on the basis of the
uncertainty in G and the requirement that solar-system bodies present thin
targets to nonphotons. Next, we modeled nucleons by photonic rings. By
asserting that the pressure resulting from particle bombardment of a ring’s
exterior be equal and proper for dynamic equilibrium of the ring’s circulating
photonics, a value of the pressure was obtained. Equating this pressure to that
felt by a perfectly reflecting surface of nonphotons, we found the central
parameter of the photon-nonphoton universe must be K = 1.21 x 107,
With the values of A and K in hand, we found y = 7.34 x 10
via the A-K-y connection required for nonphoton gravity to equal
Newtonian gravity.

It may be noted that the value of A and the A-K-y connection of Eq.(95)
derived from considerations of phenomena on the scale of the solar system. In
contrast, the K-A connection of Eq. (104) derived from consideration of

phenomena on the scale of a nucleon. By combining the findings of the
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considerations on these vastly different scales, a first set of specific values of
A, K and y have been obtained and may now be utilized to define important

features of the modeled photon-nonphoton universe.
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Figure 11. System momentum triangle. Figure 12. Circle generated by point o
by rotating system momentum
triangle about P.

Note: Sphere radii << L

Satorov unverse hyg11-13

Figure 13. Spheres of ponderable mass M and m embedded
in a sea of space nonphotons.
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VII. EMERGING FEATURES OF THE MODELED UNIVERSE

On the basis of the specific values of the trio of parameters now in

hand, namely,

A= 10" grams/cm’,

K=1.21x10"
and y=17.34x 10,
we are able to determine the implied properties of a variety of particles
(nonphotons, photonics, electrons, protons and neutrons) in the modeled
photon-nonphoton universe.

A. Nonphoton-Related Quantities

In the universe frame, the average moving nonphoton would be seen
to be formed by the headon fusion of a photon consisting of A e-quanta with
one of a (<A) quanta, where

A= (12)(1+0) - (uc*/kT) - K = 4.175 x 10" (108)
and a=(1/2)(1-0) - (uc*/kT) - K = 0.445 x 1077 . (109)
The values of €, a and pc’are given by Eqs.(105), (81) and (52) respectively;
and, T =2.73 Kelvin. The number density of these nonphotons is
D=nK=2228x10"-cm?>; (110)

their inertial-mass density is
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po=np - K =3.562 x 10* grams - cm™; (111)

and, their directional flux is

® = (o/47m) cn'K = 4.30 x 10*%cm™ - sec™ - steradian™. (112)
If nonphotons are perfectly reflected by a surface, the surface feels the
pressure

2 2 1~ 64 2

p={(a/3) - npc” - K=0.690 x10™ dynes - cm™. (113)

The definition and the wvalue of the quantity n is given by Eq. (50)

B. Photonic-Related Quantities

The momentum magnitude of the average photonic is &/c and that of
the average moving nonphoton is apc. By definition, y is the ratio of the
former to the latter. Hence, the average photonic’s energy is given by

d=auc’ - y=534x 107 eV. (114)
That 6 is considerably smaller than the average energy of either the micro-
wave background photons or the moving nonphotons of 2.73K space is
evident from inspection of Table 1 entries. The number of e-quanta making
up the average photonic constituent of weighable matter is
B =8/ = (auc’/kT) - K - y = 2.745 x 10, (115)
In constructing photonic-ring models of the electron, proton and

neutron (Appendix D), each photonic was assumed to be without electric

65



charge or to carry a charge of +C or —{. The value of { is proportional to &
according to

(=2 (8/mc?) - e=V2- (a/m)-e-y=7.10x 107 esu, (116)
where m represents the electron’s rest mass and e the magnitude of its
charge (see Eq. (D9) of Appendix D).

C. Microscopic Cross Sections

The microscopic cross section for the elastic collision of an average

nonphoton with an average photonic of weighable matter is
6 =2(8/c*A)=2(ap) - A" - y=9.50 x 107 cm™. (117)

Table 1 shows the average energy of a microwave background
photon is ~ 6.36 x 10 eV, which equals ~ 1.19 x 10" x &. If the
equivalence of mass and energy and that of inertial and gravitational masses
are to hold, the microscopic cross section for an elastic encounter between a
nonphoton and a background photon must be ~ 1.19 x 10" xo = 1.13 x 10”2
cm’. The number density of background photons is 409/cm’. Thus, the
mean-free path for such encounters in free space is [409 x 1.13 x 10™?]"
= 2.16 x 10" cm, or about 2.16 x 10°" light years.

The above-cited microscopic cross sections may be compared with

Wy, the cross section for e-quantum fusion that offers an explanation of
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redshift in a static universe (Section V). Via Eq. (65) and Eq. (50), that
“redshift” cross section may be expressed as

un=[6nA-KJ]'=7.48 x 10" cm (118)
Here, A represents the product of ¢ times the Hubble time. The above p;

value assumes a Hubble time of ~10'" years which yields a A value of

~10% cm.

D. Features of Photonic-Ring Models of the Electron, Proton_and

Neutron

Appendix D describes many—but not all—of the features of
photonic-ring models of a trio of particles (the electron, the proton and the
neutron). The models were designed to conform with four of each particle’s
important properties: mass, charge, angular momentum and magnetic
moment. Two or three circles, all of radius R, represent the orbits of a
model’s photonics. The circles’ planes are parallel and closely spaced; and,
their centers lie on the model’s “axis”, a line normal to these planes. On one
circle, N* photonics, each carrying a +{ charge, orbit the axis in one
direction. On a second circle, N~ photonics, each carrying a — charge, orbit
in the opposite direction. The electron was modeled by only two circles, the

N" and the N~ circles. A third circle is required to model a proton or a
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neutron. On the third circle, N° electrically neutral photonics orbit in the
direction that enhances the net angular momentum of the charged photonics.

In Appendix D, it was possible to define R and the relative
populations of each photonic type. However, for lack of a value of 9, it was
not possible to specify the values of N', N~ and N° for each member of the
particle trio. By use of the o-value developed here, we can now specify
N = Mc? /5 (the total photonic population). And, with the relative population
figures (N'/N, N/N and N°/N) developed in Appendix D, the individual
populations of each photonic type becomes definable.

Table 2 displays the photonic population figures for the three modeled
particles. Also shown are r,r and r°, the half-thicknesses of N, N
and N° rings compatible with dynamic equilibrium under the pressure
p = 0.69 x 10% dynes/cm’ the pressure felt by perfect reflectors of
nonphotons. It should be noted that these half-thickness values are obtained

by use of Egs (100) and (101) with N"8/c*, N"8/c* and N°8/c’ written for M.
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Table 2. Features of Photonic-Ring Particle Models.

Particle Modeled
Model Feature
Electron Proton Neutron
Mass Energy (MeV) 0.511 938.3 939.6
All Rings 0.957x 1028 1.757 x 103! 1.7595 x 10%
+ 28 28 2%
Photonic N ring 0.140 x 10 2224 x 10 1.293 x 10
Populations N’ ring 0.817 x 102 1.548 x 102 1.293 x 102
N° ring 0 1.753 x 10%! 1.757x 10°!
Ring Radius, R (cm) 2.73 x 10°! 1.053 x 1014 1.051 x 10
N'ring, 1" 1.794 x 103 3.640 x 102 2.784x 10°%
Ring —
Half-thickness NTring, 1~ 4.330 x 103! 3.036x 10 2.784x 102
(cm)
N° ring, r° 0 1.023 x 107 1.026 x 1077
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VIII. CONCLUDING REMARKS

Let us recall the path followed in bringing into a coarse focus some of
the important features of a photon-nonphoton universe. We have assumed
all things in the universe are made up of particles whose dynamic properties
transform from one inertial frame to another according to the prescriptions
of special relativity. To specify a particle’s properties, we utilized the two-
vector formalism described in Section II. As a consequence of opting to use
this particular formalism two basic particle-types presented themselves. In

addition to photons, the notion of “nonphotons” emerged.

In Section III, we considered the formation of one particle by the
fusion of two and the converse fission event as such would be seen in a
preferred inertial frame. That frame, referred to as the “universe frame”,
was assumed to be infinite in extent and age. An observer knows his is the
universe frame if he sees an isotropic background of microwave photons
with a Planckian energy spectrum at a temperature T = 2.73 Kelvin.

We postulated that a necessary condition for the above fusion-fission
events to occur is that likekind formalism vectors be additive in the universe
frame. A consequence of this postulate is that photons and nonphotons

could coexist symbiotically. That is, two photons could fuse to form a
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nonphoton which later could fission to return the same two photons to the
universe.

In the universe frame, two photons would be seen to move headon
toward the fusion scene. Because of the special relativity energy-momentum
transformation rules, in other frames the same two photons would--in
general--not be seen to move toward a headon meeting. However, a fusion
or fission event would, of course, be seen in all frames though details of
particle motions would be seen to differ as described in Appendix B*. As
noted in that appendix, if particle mass-energy and momentum transform in
accord with special relativity, only one frame may be chosen for the
satisfaction of our above-stated fusion-fission postulate. And, to construct
the photon-nonphoton universe model, the unique and infinite universe
frame was chosen to establish rules that govern allowed particle conversion
events. In a sense, the preferred frame corresponds to Newton’s absolute

space with respect to which bodies were regarded to translate or rotate.

*Equations B-2 and B-3 of Appendix B define a necessaary condition for photon fusion
in terms of an arbitrary frame’s (experimentally determinable) “a-signature”, where ac is
the frame’s velocity relative to the a=0 universe frame. Those equations might be
regarded as a “law of nature” since they have the same form for all frames. This law
simply requires that photons meet headon in the 0=0 universe frame for fusion to occur.
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In Section IV, to develop the densities of photons and nonphotons in
an equilibrium mix, we assumed particle energies in the universe frame are
integer multiples of a tiny energy quantum, e. We believe some of the
reasons for, and the benefits deriving from, such an assumption deserve to
be emphasized.

A discrete energy quantum permitted us to think in terms of
countable energy states as required for a statistical analysis of equilibrium
particle distributions. A discrete, but tiny, € is sufficient to generate the
Planck photon spectrum on the basis of an appropriate (Bose-Einstein)
statistics; and, to generalize the Planck photon curve by extending it into a
surface (Figure 6) that defines the spectra of the nonphotons in an
equilibrium particle mix. A finite € leads to densities of nonphotons that are
very large (~ kT/e times photon densities), but finite (i.e., we have no
singularities with a non-zero €). And, to develop the redshift idea put
forward in Section V, it was helpful to regard photons as a very large
number of quanta, each with a very small energy &, that travel as an ordered
group.

Also, with a tiny e-quantum, our model’s “central parameter”,
K = kT/e, is a very large—but finite—number. Since the mass-energy

density of the ethereal nonphotons is proportional to K, a small volume of
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the photon-nonphoton universe contains the large energy required for a
“mini big bang” event. That is, via photon-induced nonphoton fission, one
has the makings of a divergent chain reaction that could unleash—from a
small volume--the concentrated mass-energy of ethereals in the form of not-
so-ethereal photons. Indeed, strongly collimated photon beams may be

formed due to the laser-like nature of photon-induced fission of nonphotons.

Another effect of the high K-value associated with a tiny ¢ is the
large pressure that would be felt by a perfectly reflecting surface of
nonphotons. We have estimated this pressure to be sufficient to confine the
photon-like constituents (photonics) to the interior of thin, string-like,
models of electrons*, protons and neutrons. The models conform with mass,
charge, spin and magnetic moment of these particles. (Section VII and
Appendix D). And, we believe similar models of Gell-Mann’s quarks may
also be constructed.

That such ponderable-matter particles may be modeled by thin rings

allowed us to explain Newtonian gravity in terms of the elastic collisions

*In his 1916 book (Ref. 20, page 60), Einstein noted that “The general theory of relativity
renders it likely that the electrical masses of an electron are held together by gravitational
forces.” In a photon-nonphoton universe, the same nonphotons that cause gravitational
forces also act to confine the electrically charged photonics of an electron within a very
small toroidal region. Thus, such a universe is in accord with this particular conjecture
by Einstein over eighty years ago.
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between nonphotons and the photonic constituents of string-like electrons
and nucleons, (Section VI). Newtonian gravity results when bodies present
“thin” targets to nonphotons. That is, in thin targets, a nonphoton can
experience essentially no more than one collision with a body’s photonics.
In going to thick targets, each nonphoton may experience multiple
collisions with a body’s photonics, and the nonphoton Newtonian gravity
theory might be extended to conform with the gravity of general relativity.

At this point, it may be of interest to remark on certain motivations
for modeling electrons and nucleons by photonics moving in closed orbits.
The rationale becomes evident from a reading of the abstract of Appendix E,
which is a copy of a 1949 note (Ref. 1). That abstract reads:

The special relativity Doppler equation is applied to a photon
describing a closed path. The time average behavior of this photon is
notedly similar to that of a mass equal to the photon’s energy divided by the
square of the velocity of light. In particular, it is noted that light confined
within a small space has the gross properties of a particle. The microscopic
properties of such confined photons could explain “intrinsic” spin. The
conservation of mass and energy for all types of collisions are natural
consequences of such an inner structure.

According to the above, when seen in an inertial frame where an
electron or a nucleon is at rest, the observer sees photonics moving in

circular orbits, the system’s mass-energy being that of the community of

circulating photonics. A nonphoton seen at rest may be visualized as a
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system of photonics moving around a circle of a certain radius. As seen by
an observer moving at a speed Pc in the direction of the normal to the
circle’s plane, the photonics would move along helices on the cylinder
generated by the moving circle. Thus, nonphotons, like electrons and
nucleons, may be visualized as a community of photonics moving along
paths which look closed to observers in a nonphoton’s rest frame. The angle
0 between the tangent of the helix along which a photonic of a nonphoton
moves and the helix’s axis is defined by cos 6 = f3.

It appears that all particle-types considered in constructing a photon-
nonphoton universe model may be considered to be systems of constituents
that are seen in all frames to move at the same speed—that of the speed of
light. Since a system cannot move faster than its fastest constituent, we may
understand why the speed limit for the particles of nature is c, the speed of
light. Also, we may note that with the particles made up of zero-rest-mass
photonics, one has Wilczek’s particles with “mass without mass” as seems

to be a current trend of thought (Refs. 16 and 17).

Questions raised by fairly recent observations may find answers in
terms of properties of a photon-nonphoton universe. For example, a possible

explanation of why Doppler theory applied to recent redshift observations
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implies a universe expanding at an accelerating rate is noted in Section V.
The alternative explanation is that a higher-than-linear increase in redshift
with increasing distance is a natural feature of the static photon-nonphoton
universe model. Also, as noted in Appendix F, nonphotons appear to offer
an answer to the question: “What causes the gravitational effects currently
attributed to some form of dark matter?” In that appendix, we explain how
nonphotons might mimic the existence of not only dark matter but also of a
repulsive gravitational force. And, of course, potentially reoccurring
problems on the conflicts of the age of an expanding universe and the
objects therein are avoided, as is the need for an inflationary epoch in the

infinitely old and large photon-nonphoton universe (Refs. 18 and 19).

Three possible experiments to test aspects of the photon-nonphoton
universe model come to mind. First, redshift observations should yield a
constant when the distance to the photon emitter is divided by In (Ag/A.).
Here, Ay and A, are the wavelengths of the detected and emitted photons,
both emitter and detector being at rest in the universe frame. Second, the
average nonphoton, bearing news that a strong gravitational event had
occurred, should be found to travel at ~81% of photon speed in the universe

frame. Third, if nonphoton bombardment of the photonics of the
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photonic-ring models of electrons and nucleons is a valid representation of
their response to a gravitational field, then the weight of a magnet may be

found to vary with its orientation relative to the gravitational field.

We have drawn together a group of studies that led us to an
unconventional model of the universe. This document represents a progress
report on a continuing construction of the “photon-nonphoton” model. Thus
far, we have been able to bring into coarse focus some of the model’s
features by noting the multiple roles that nonphotons might play in
explaining old and new observations. Future studies will attempt to sharpen

the focus while exploring other candidate roles of nonphotons.
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APPENDIX A

INERTIAL FRAME SIGNATURES

The observations of an essentially uniform microwave background radiation
suggest that the universe might be modeled by a preferred inertial frame. Relative to
such a “universe frame”, observers would see photons uniformly distributed, moving
isotropically and having a 2.73K blackbody energy spectrum. Observers in a frame that
moves uniformly through the universe may determine their velocity, ac, relative to the
preferred frame via observations of an apparently anisotropic background radiation. That
is, every frame within the universe has an a-vector signature, a = 0 being that of the
universe frame. Here, we describe an experimental procedure by which an observer

might determine his frame’s a-signature.

m—— mamw dmme mme  mem  weiss  merm e  mme  mme e e e

We assume the frame-to-frame transformation prescriptions of special relativity
for the properties of point-like particles are applicable; and, we treat photons as a special
class of such particles. The general particle’s speed relative to the frame, denoted by S,
equals Bc, where ¢ is the speed of light. The inertial mass of the particle is represented
by me/c’®, where € is a tiny unit of energy. The particle’s momentum magnitude is
represented by Pe/c. By the definition of momentum, P = Bm. The particle’s vector

momentum—in units of &/c—is given by

78



P =P {cosy i+ siny [cos( ] + sin{ k]}. (Al)

Here, i, j and k represent unit vectors in the directions of the axes of a cartesian
coordinate system in the S-frame. The angle between P and i is y; and, that between the
plane of P and i and the plane of jand j is { .

Relative to S, a second frame, denoted by S', is assumed to move at the velocity
of aci. In S’, observers see the above particle to move at the speed B'c, to have an inertial
mass of m'e/c’ and a momentum magnitude of P'e/c. Again, by definition, P’ = p'm’.
Taking the unit vectors in S’ to be codirectional with those in S, the particle’s vector
momentum—in units of &/c—is given by

P' =P’ {cosy'i + siny’ [cosL]j + sinl’ k]}. (A2)
As viewed in S', the angle between P’ and i is y' and that between the plane of P’ and i
and the plane of j and j is {.

According to special relativity,

m' = [(1 — ap cosy)N1 — o’] m; (A3)
and P'={[(B cosy —a)/ V1 - u)] 1+ P siny [cosj + sinCk]}m. (A4)

A feature of Egs. (A3) and (A4) is that—in all S’ frames—m' and P’ satisfy
m'y’ - (P'Y =m,, (A5)
where m, is a constant. Since P’ = 0 in the particular S'-frame where the particle is seen
at rest, moe/c’ represents the rest mass of a particle capable of rest. According to these
equations, a particle seen to move at the speed of light in S (i.e., a B =1 particle)
has m’ = P’ in all S’ frames. That is, photons have m, = 0 and are seen to move in all
frames at light-speed according to the special relativity prescriptions of Egs. (A3)

and (A4).
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Since m? - P* = (1 — p?) m?, the P’ quantity for the general particle may be

expressed as
P'=[(m)" - (1-p*)m’]", (A6)
where m’ is given in terms of o and the S-frame quantities B, m and y by Eq. (A3).

We now consider the microwave background photons in S, the a = 0 universe
frame, and in S’ where a # 0. The photon of energy me in S will have in the S'-frame the
energy m's and momentum magnitude P'e/c, where

m'=P'=[(1 - o cosy)V1 — a2 ] m. (A7)
Since P'=m’, Eq. (A2) becomes
P'= {cosy’i + siny’ [cos(’ j+ sin{' k]} m” (A8)
And, since B = 1, Eq. (A4) becomes
P' = {[(cosy — &)N1 — a ] i + siny [cosC j + sin{ k]} m. (A9)

Equating the i components of the above two expressions for P', the

interdependence of y and y' is found to be given by

cosy' = (cosy —a)/(1 — a cosy); (A10)
or, equivalently, by

cosy = (cosy’ + a)/(1 + a cosy’). (A1)
Since the j and k components of P’ given by the two expressions for P’ must be the same,
it follows that { = {' and m siny = m’ siny'; conditions which, of course, also yield the
Eq. (A10) and (A11) equations.

Substituting the cosy expression of Eq. (A11) into Eq. (A7), we obtain

m'=P' = [(V1 - 02)/1 + o cosy’)] m (A12)
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which will be useful in developing, an experimental scheme to determine the a
signature of S'.

The previously defined universe frame (i.e., the « = 0 S frame) has the
characteristics of the uniform, and isotropic coordinate-momentum phase space
underlying conventional derivations of blackbody photon spectra, such as the observed
microwave background spectrum. And, a statistical analysis requires one to think in terms
of countable energy states of photons. To meet this requirement, we assert the photons
are seen in S to have energies equal to integer-multiples of a very small energy
quantum, €. That is, we take m to be integer and let our tiny energy unit represent the
energy quantum. This assertion and the assumption that our point-like photon particles
obey Bose-Einstein statistics yields the 2.73K Planckian spectrum of the microwave
background photons.

Because of the isotrophy seen in S, the fraction of the m-group photons that move
within the solid angle

Q (v)=2n (1 - cosy) (A13)
equals fly) = Q (y)/4n = (1/2) (1 — cosvy). (A14)
Let f(y') equal the fraction of m-group photons seen in S’ to move in directions
within the solid angle

Q'(y") =2m (1 - cosy’). (A15)
If y' is related to y according to Eq. (A11), f (y") will equal f(y). This follows from the
fact that the components of a photon’s momentum normal to ¢ = ai are the same in S and

S’. Hence, by use of Egs. (A14) and (All), we find
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f ()= [(1/2) (1 - cosy")] * [(1 —a)/(1 + a cosy")]. (A16)
In S, the “per-steradian fraction” is given by
df/dQ = 1/4n (A17)
for dQ about any direction y. In S’, the per-steradian fraction is the function of direction,
y', given by
df/dQ’ = (1/4m) » [(1 — o&* Y(1 + 0. cosy’)* . (A18)
The scheme here described for the experimental determination of an inertial
frame’s o signature envisions measurements of the energy flow rates of the microwave
background photons into an instrument. These rates depend on the number density of
each m-group of photons. Let F(m) represent the number density of m-group photons
seen at any time in S. As seen at any time in S, this number density would be
F'(m) = (1 — o)™ F(m). (A19)
That is, the number between two planes normal to o = ai and separated by a distance L in
S would equal the number between these two planes as seen in S’ to be separated by the
contracted distance (1 — o? )*Lin S'. If these planes reflected each photon such that
--in S--the angles of reflection equaled those of incidence, this clearly would be true.
Under those conditions, the number between the planes would remain constant since
none escape. And, if the planes suddenly became transparent, those moving out would be
equal to the number moving into the other side of the two-plane region. On average, over
time, Eq. (A19) expresses the relationship between the number densities of the m-group

photons as seen in S and S'.

82



To determine the energy flow rates into en instrument, we start by noting that
F'(m) « [df/dQY’) « d€)' equals the number density of those m-group photons seen in S' to
move in directions within dQ’' about a line making the angle y' with a = ai. The product
of ¢ times that incremental number density represents the rate that these m-group
photons cross a unit area normal to that line. We will be concemed with the rates that m-
group photons flow across unit areas of planes oriented in two special directions. In one
case, the plane of interest is nomal to @ In the second case, g is parallel to the planes of
interest. The energy flow rates, of course, would simply equal the product of m'e, where
m' is given by Eq. (A12), and the above number flow rates.
In the first case, the incremental flow rate of m-group photons across a unit arca
of plane normal to o inthe +i direction is given by
dl; (m) =(cosy’) ¢ F'(m) (df'/dQ")dQY". (A20)
By use of Eqs. A(I18) and (A 19), the above may be expressed as
di(m) = [c F(mX1 - &)*/4n} « [(cosy")/(] + a cosy’)* | (Y. (A21)
For those m-group photons that move in directions dy’ about y',
d)' = d[2m(1 - cosy')] = 2z siny’dy’, (A22)
the value of dl)(m) 1s given by
dii (m) = fe F(m)(l - «’)/2]  cosy’ siny')(1 + acosy')’|dy’. (A23)
The associated incremental energy flow rate is given by
dU; (m) = [cemF(m)(l - az)/Z] * [{cosy' siny")/(1 + @ cosy ')3] dy’, (A24)
which is obtained by use of the m’ expression of Eq. (A12). Except for the constant of
integration, the integral of Eq. (A24)is

U; (m.y) = [cemF(mX} - a’}2a’] « [{1 + a cosy’)' + (172X 1+ cosy'}?]. (A25)
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Of interest here are the two quantities given by
AL (m) = JesmF(m)/4] « [(1 - a)/(1 +a)] (A26)
and U, (m) = fcemF(my4] + [(1+a)/(1-0)]. (A27)
Equations (A26) and (A27) give the rates that the energy of m-group photons are seen in
S' to flow across a unit arca of a plane normal to g in the +a_ and —a directions,
respectively.
In the second case, we seek the rates that the energy of m-group photons cross a
unit area of a plane to which g is parallel. We start by noting that the quantity
siny’ sin{cF'(m)(df/dQ’) siny’ dy'dl
represents the rate that m-group photons, moving with directions in  d¢ about ¢ and dy’
about y' cross a unit area of the i,j plane. Of course, since g = ai, the i,j plane of the S’
frame represents a plane to which a is parallel. Now, let dlI, (m) represent the integral of
the above quantity with respect to { over the range 0 to . By use of Egs. (A18) and
(A19), we have
d (m) = [€F(m)(1 — o}%/2x) + (siny'Y(1 + e cosw'Y'] dv". (A28)
Multiplying by m'e, we obtain the associated incremental energy flow rate
dUj; (m) = [cemB(m)(1 - o”)/2x] * [(sin’y'}(1 + a cosy’)’] dy'". (A29)

Except for the constant of integration, the integral of Eq. (A29) is
Uh(m,w) = [ceF(mX 1 —a’y2a] + {(1 - o’} tan™ { [(1 ~a)(1 + @)]* tany}2)
- siny'[2a(1 - o’X(1 + a cosy")]”
+ siny’ [2a(1 + & cosy")’T'} (A30)

Of interest here is the quantity

Us(m) = JeemF(m)/4] = (1 — a?)*, (A31)
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which represents the rate that the energy of m-group photons is seen in S' to cross a unit

area of any plane to which g is parallel from either above or below said piane. As
previously noted @ = gi, so the ij plane is an example of such a plane. However, the
direction of ] is arbitrary so we are able to say Eq. (A31) gives the value of Uy (m) for any

plane to which a is parallel.

In S, the @ = 0 universe frame, the energy density of all the m-groups of
microwave photons is ) meF(m). If e<<kT, as here assumed, that energy density is
essentially independent of €; and, its value is

U = (1*115) [8nkT/h¢)’} (kT) = 0.260eVecm™. (A32)

In the above, T =2.73K and k and h are Boltzmann’s and Planck’s constants. Thus,
the total energy flow rate across planes of area A to which g is parallel is given by

Us=[AcU/]« (1- 0%y~ (A33)
The totals flowing in the +g and —g directions into planes of area A that are normal to a
are, respectively, given by

UL = [AcU/d] « [(1 - a)(1 +a)] (A34)
and U= [AcUM] « [(1 + a)(1 - @)]. (A35)

We are now able to define an instrument and the procedure that might be used
by an observer in the S’ frame to determine his frame’s a-signature. The instrument
would have the shape of a cube whose faces each have the area A. Three pairs of
opposite faces make up the six aperatures into which the microwave background
photons flow. The rate of energy flow into each face is constantly monitored. The

cubical apparatus is rotated, more or less at random, until one pair of opposite faces
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indicates each of this pair is receiving the energy of the microwave photons at the same

rate; namely, at the rate given in Eq. (A33).
|

At this point, the random rotation is stopped; and,rotation is now restricted to
|

proceed about a fixed axis relative to S'. That axis is a line normal to the planes of the

two opposite faces that first exhibited the receipt of equal energy flow rates. Of course, |

the flow rates into these two faces remain equal and constant since this restricted type of |

rotation does not alter their orientation relative to S When a second pair of opposite

faces shows the receipt of equal flow rates; namely, the rate given by Eq. (A33), all
rotations are terminated. |
The remaining pair of opposite faces will now indicate unequal flows of incoming |
energy. One of them will register the flow rate given by Eq. (A34) and the other the rate
given by Eq. (A35). This tells the S' observer that his frame is moving, relative to S in |
the direction from the ;U face to the U} face. In units of ¢, the speed, a, of the
observer’s frame, S', relative to S, is readily obtained in terms of the ratio.
T=UYGU) = 10 +ay(1 - o). (A36)
The above gives |
a=(Vr- 1)(Nr +1) (A37)

for the speed of S’ relative to S,
|

In summary, the observer in §' finds the orientation of his cubical instrument that,

|

yields equal energy flow-rate readings for two of the three pairs of opposite faces of the
cube. He then determines t using the flow rates into the remaining two faces. The
|

direction of his frame’s g-signature vector is from the lower to the larger of these two
|



unequal rates. That vector’s length, a, given in terms of r by Eq. (A37), equals his
frame’s speed in units of ¢ relative to the universe frame, S.

Of course, since U is the known quantity given by Eq. (A32), the observer in S’
may also compute the value of o in terms of his cube’s dimension, VA, and the measured

quantities U}, +Uj and {U{ via Egs. (A33), (A34) and (A35).
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APPENDIX B

PARTICLE CONVERSION EVENTS
AS SEEN
IN DIFFERENT INERTIAL FRAMES

The a-vector signature of an arbitrary inertial frame and a means for its
determination have been defined in Appendix A. In addition to the conservation of
mass-energy and momentum, which special relativity assures in all frames, 1t was
postulated that Eqs. (13) and ( 14) must apply in the a=0 (“universe”) frame 1f the particle
conversion events

EB < EB+eb (B-1)
are to occur. An event seen to occur 1n the a=0 frame will, of course, also been seen to
occur in all a#0 frames. However, should an observer in an a0 frame opt to use the
two-vector formalism 10 express the particle properties seen in his frame, those vectors
will not always satisfy Egs. (13) and (14). Indeed, if paricle mass-cnergy and
momentum are to be transformed from frame-to-frame in accord with special relativity,
only one frame can be chosen for the satisfaction of Eqs. (13) and (14). And, 1o construct
the photon/nonphoton umverse model, the unique and spacially infinite a=0 frame has
been chosen as the basis of rules that govern allowed particle conversion events.

The postulate of Egs. (13) and (14), together with the conservation laws and the
formalism property of Eq. (1), makes it clear that Eq. (B-1) events are limited 1o those
where E,B and e.b are seen to move collinearly, or to be stationary, in the a=0 frame 1f

seen to move codirectionally or to be stationary in S, the a=0 frame, all particles will be
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so seenin S’, an arbitary a=0 frame. And in such cases, Eqs. (13) and (14) will apply
inbothSand S'.
Where E,B and e,b are seen to move antidirectionally in S, it was found that these

particles must be photons and E,B a nonphoton if Eq. (B-1) events are to occur. In the

special case where the photons are seen in S to move on a line parallel to the a-vector of
', such collinearity will also be seen in §'; and, the formalism vectors will satisfy Egs.
(13) and (14) in both S and §'. It remains to examine the case where a and the photon
motions are not seen to be parallel in S. In that case, special relativity precludes the
collinearity of photon motion seen in S from also being observed in 8. This more
general scenario is illustrated in Figure B-1.

Figure B-1a shows the view in S and Figure B-1b the view in §’. In S, the more
energetic of the two photons has the energy N and the other photon an energy of n in
units of &. We identify these photons as “photon-N" and “photon-n~" when referring to
them in either S or §’. Various properties of these two photons and of the nonphoton
formed by their fusion are summarized in Tables B! through B4. It is understood that
mass-energies are in units of £ and that momentum-magnitudes are in units of ¢/c. In the
second column of the lower portions of the tables, components of the unit vectors in the
direction, seen to be moved by a particle, are tabulated. Note that, because of the
collinearity of all momenta seen in S, all mass-energies and momenta are determinable in
terms of four parameters: N, n, a and ©. The ©-parameter is the direction moved by
photon-N as seen in S. As indicated in Figure B-1, directional angles are measured

counter-clockwise from a to a particle’s momentum vector.
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In the third and fourth columns of the upper portions of the tables, the lengths of
the particles’ “electric” and “magnetic” vectors (i.e., their formalism vectors) are
displayed. The lengths are computed from the massenergies and momenta of the
particles as seen in S or 8’ by use of Egs. (7) and (8). Accordingly, these lengths are
expressible in terms of the same four parameters used to define the mass-energies and
momenta in S and $’. For a conversion event to occur, the electnc vectors of the two
photons must be codirectional or antidirectional in S. In the former case, the upper signs
apply in the Table B3 expressions for the nonphoton’s electric and magnetic vector
lengths; and, the lower signs apply in the latter case.

The unit vectors in the directions of the particles’ electric and magnetic vectors
are not confined to the i,j planc as are the unit vectors of their momenta. Thus, in
addition to the above four parameters (N, n, o and @), a fifth parameter, @, is required to
define the components of the unit vectors in the directions of the particles’ electric and
magnetic vectors appropriate to frames S and S’. In both frames, these two formalism
vectors are normal to each other and to their particle’s momentum. The meaning of the
angle @ is readily understood by noting the k(=ixj) components of the two formalism
vectors. ®=0 or & means a particle’s electric vector is in the i,j plane. Thus, ®#0 means
this vector has been rotated (about its momentum vector) out of the i,j plane by the angle
&. The three components of the umit vectors in the directions of the particles’ electric
and magnetic vectors are tabulated in the third and fourth columns of the lower portions
of the tables.

If N=n, a statipnary nonphoton is seen in S. Table B4 displays the various

properties of the nonphotons formed by the headon fusion of equal energy photons in S.
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As there noted, the unit-vector components of the formalism vectors in S are taken to

equal those in §’ as a—0.

— e - — — - e m——— ——

An observer in S knows that two photons will fuse if they meet headon with their
electric vectors aligned collinearily. But, how does an observer in S’ know what photon-
pairs will fuse? To identify such pairs, the S'-observer starts by determining his frame’s
a-vectar. He knows that candidate pairs for fusion are those whose photons move
toward a meeting in a plane to which a 1s parallel. He chooses one such photon whose
momentum-vector P' makes the angle ®" with the a-vector (Fig. B-1b) and whose
electric vector 1s inclined at the angle @ with respect to the a,P’ plane. He knows that
the secand photon must also have its electric vector inclined at © or at (n+<d) when the
two meet. He chooses the second photon with such an inclination and with a momentum
vector p’ that makes a particular angle ©' with the a-vector. That unique angle is

specified in terms of @ and ©' by

sin ®' =- [(1-% sin @] ! [1+o+2a cos ] (B-2)
and c0s 8’ = - [(1+0?) cos ©'+2a] / [1+o®+20 cos ©'] (B-3)

The twao photons, selected via the above procedure, will be seen in S to meet headon with
their electric vectors aligned collineanly. This is the means by which an observer in S' is
able to 1dentify which photon pairs will fuse.

Having identified a pair of photons that will fuse into a nonphoton, how does the
observer in S’ predict the properties of the nonphoton? These properties are specified in

Tables B3 and B4 in terms of the parameters a and ®, which are known to the §'
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observer, and N, n and ©®, which he can compute from observable input. From the

photon energies, N’ and n’, seen in S’ and the already known angles ®' and €', he obtains

Nand nvia
N = [(1+a cos ) / VIP] N’ (B-4)
and n=[(1+acos0)/ -2 ] 1’ . (B-5)

The remaining parameter, ©, is defined by

sin® = [(Vi< sin @)/ (1+a cos ©)] (B-6)
and cos © = [(cos @+a) / {1+ cos @)] . (B-7)

With N, n, a, 8 and @ in hand, the nonphoton properties may be computed by use of the

prescriptions given in the cited tables.

- w e - e e e M WS R W e

In addition to identifying photon-pairs capable of fusing into a nonphoton and
predicting the nonphoton’s propertics, the S’-observer can also pick a nonphoton at
random and predict the properties of the two photons that could be born from the
nonphoton’s fission. For example, say he picks the nonphoton that has mass-energy N';
that has a momentum vector of length #'; and, that moves in the direction . In S, the
nonphoton’s mass-energy is seen as

N = [(N'+aP cos ¥') / Vi-o?] . (B-8)
The nonphoton’s momentum vector is seen in S to have the length

P = {[(Pcos¥+aN) / m]z+ [Psin )2} 2 (B-9)

and to point in the direction defined by
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sin® = [(Psin ¥)/ P] (B-10)
and cos @ = [(Pcos W+aN) / (PV1-a)]. (B-11)

The inclination @ of a2 moving nonphoton’s electric vector is seen to be the same in

both Sand S’.

In S, the nonphoton could fission into antidirectional photons with energies of
N=(N+P)2 (B-12)
and n=(NP)/2, (B-13)
where N and P are now known to the S’-observer via Eqs. (B-8) and (B-9). Asseenin S,
photonN wonld meve in the direction ©, which is known to him via Egs. (B-10) and
(B-11).
Thus, with the full set of parameters (N, n, a, © and @) in hand, the S’-observer is

now able--via the prescriptions in Tables B1 and B2--to predict all the properties of the

two photons into which his selected nonphoton could fission.
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APPENDIX C |

DERIVATION OF RELATIONSHIPS BETWEEN
EVENT-PROBABILITY PARAMETERS
Under equilibrium conditions, the population of nonphotons of energy me, born
from the head-on fusion of a photon of energy ne with one of energy (m-n)e, remains--on
the average—constant. That is, via the fission death of nonphotons, photons are bom; via |
the fusion death of photons, nonphotons are born; and, constant population requires that |

particle birth rates equal particle death rates. Below, we consider the events that occur in

a unit volume where particle populations equal the particle number densities, Fp,,,,

prescribed by Eq. (39). |
|

The nonphoton birthrate is proportional to the product Fn XFmno - The |

nonphoton death rate is assumed to consist of two components: death by spontaneous

fission and death by photon-induced fission. The spontaneous component is proportional
|

to F,, and assumed independent of the photon environment. The induced component |
|

has two subcomponents: one proportional to F, xF;, , and the other to F, ) XF, Our

objective here is to derive connections between the various constants of proportionality.
The nonphoton birth rate may be written as F, ;XClo mnXFmmo. Here, ¢ 15 the

speed of light in vacuum and cp, ¢y 1s the constant of proportionality associated with

|
the birth process. The quantity pi, e, Plays the role of a microscopic cross section for“

|
photon-photon fusion. We may regard cF,, as the “flux™ of photons that bombards,
|

“target” photons of number-density Fiy o ad o ) @5 the cross section for the fusion,
\

of flux-photons with target-photons. \‘
|

|

|
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The spontancous component of the nonphoton death rate may be wntten as
(/1 )XF,, Here, T,, is the “e-folding decay time” of the nonphotons in an
environment without photons. The photon flux cF,, induces nonphoton fission at the
rate F, oXCly mXFy, , and the photon flux cF,.p) . at the rate Fgq) oXClimn) mXFrmn.
Equating the nonphoton birth rate to the sum of its various death rates, we have
Fp oXCHy mnenyXFimapo = [(1/Tm 0} FaoXChnm ™ Fim-n) oXClmn) m) XFm n-- (C-1)

Solving for I/t,,, , and using Eq. (39), we obtain

1twn= i;m:(e:/hc)3 {p.n‘mm) ({n2+1A]~[(m-n)2+2A}.[eY“‘-1}> X

([(m-20)"+(2-82)A] [e™-1]- [ -1])"
- Hom [nz+2A]-[e""—1]'1

- Mgl <A [T } (c2)

where y has been written for ¢/kT.

To obtain the desited connections between the vanous above-mentioned
constants of proportionality, we use the fact that 1/t is assumed to be independent of
the photon environment. That environment is defined by the system temperature T and,
therefore by y=c/kT—or, equivalently, by e'. This means &(1/1,,,,/&e")= 0 for all values
of m and n. Carrying out the differentiation and requiring that the multipliers of e
vanish for all g-values, we obtain the connections expressed by Egs. (53), (54) and (55)

of the text.
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[t may be noted that had we assumed Boltzmann or Fermi-Dirac statistics for the
nonphotons rather than Bose-Einstein statistics, we could not have found a 1/1,,
prescription that is independent of the system parameter /k T which--via T—determines
the system’s photon environment. That is, for the spontaneous fission rate of nonphotons
to be independent of the photon environment, out of the three types of statistics

mentioned, it is necessary to choose the Bose-Einstein type.
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APPENDIX D
PHOTONIC RING MODELS
OF
THE ELECTRON, PROTON AND NEUTRON

Reference 7 describes photonic ring models of the electron and its antiparticle that
conform with four of their important propertics: mass, charge, angular momentum and
magnetic moment. Photonics of two types (photons with plus or minus electric charges)
move in opposite directions along two neighboring rings in numbers prescribed to assure
conformity. To define similar models of the proton and the neutron and their
antiparticles, we add a third photonic species: electrically neutral photons. The size of a
model with three neighboring rings and the relative populations of each photonic type are

prescribed in terms of the above-cited four particle properties.

—- —— - - ————a— —— ———— ——— — —

All photonics are assumed to have the same energy 8. Those that are not neutral

are assumed to carry a charge of magnitude { The quantities 5 and £ are regarded as

fundamental since the same values are used to construct a ring mode! of the electron, the

proton and the neutron and their antiparticles.

The total number of phetonics in the mode! of a particle of mass M is given by

Mc¥s = N°+N* + N . (D)
N° represents the total number of neutral photonics, N’, the total of those with +&

charges; and, N°, the total of those with —{ charges.

Equating the net charge of the photonic system to that of the particle it models,

one has

102



QL =N"-N, (D2)

where Q=0, +e or-e for a member of particle trio under consideration

Two or three circles, all of radius R, represent the orbits of a model’s photonics.
The circles’ planes are parallel and closely spaced; and, their centers lie on the model’s
“axis”, a line normal to these planes. On one circle, all N* photonics orbit the axis in one
direction. On a second circle, all N~ photonics orbit in the opposite direction. For the
nucleons, N° # 0. And, on a third ring, we assume all N” photonics orbit in the direction
that enhances the net angular momentum of the charged photonics.

Every particle of the trio under consideration has an angular momentum of
magnitude h/4x. This requires that

hc/(4r8R) =N+ (N* —N). (D3)

Here, the upper sign applies if N'>N™ (i.e., Q= +¢) and the lower if N>N' (ie., Q = -e).

The electric currents of the N" and N~ photonics are in the same direction since
these oppositely charged entities orbit in opposite directions. Equating a particle’s
magnetic moment to that of its photonic ring model, yields the equation

peh/(2TMcCR)=N"+ N~ . (D4)

Above, p represents the magnitude of a particle’s magnetic moment in units of
eh/(4nMc).

It is to be noted that Eqs. (D3) and (D4) relate the positive numbers N°, N* and
N~ to the magnitudes of two vector quantities: angular momentum and magnetic
moment respectively. The relative direction of these parallel vectors depends on the

particle and is defined later.

———— —— - - ——— ————— ——— —— ——
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The above four cquations relate the four parameters. R, N°. N and N7, of a
particic’s photonic ring model to its properties M, Q, h/4n and u and the presumed
“photonic fundamentals™ & and £. Solving the equations for the model parameters one

obtains

Mc/s + Qi ’ (DS)

2
Ne= (he/4n8) (MC8) T (OC) (uehDaMel) Do)

(hc/4nd + ueh/2xMcl)

N - (1r2) [ (ueh2aMoB)- M50/ o) ] (D7)
(ho/4n8 + peh/2xMcl) ’

and N z(]/Z){ (ueh/2nMcB) - (Mc’/5 + QIL) ‘(Q/C)] . (h8)
{hc/dnd + peh2xMcl)

Above. the upper sign applies for a particle with a net charge of Q = +e or 0. and the
lower for its antiparticle for which Q =~e or (0. Since the value of +Q is the same for a
particle and s antiparticic, R and N° are the same for both. The values of N and N7, of
course, simply interchange as one goes from a particle to uts antiparticle as evident trom
Lgs. (D7) and (D8).

For the leptons, we take u= 1 and N°® = (. Substituting these values into Eq. (D6}
and writing m for the electron mass, one finds that this requires that d and £ be related

according to

S = (1/y/2) - (mc*/e). (19)

Bv use of this §-L connection and the three defimtions

n =(1/V2) (m/M), (DI0Y
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A =h2nMc (DI1)

and, N = Mc¥/ 8, (D12)
the prescriptions for a photonic ring model’s parameters may be simplified. Note that the
A quantity is — or may be regarded as — the Compton wavelength of a particle of mass
M. And, as evident from Eq. (D1), N represents the total population of the photonics in
the model of a particle with this mass.

For the Q/e = 11 particles, the parameter equations read

Ria= (12) (1+2pm) / (14m), (D13)

NN = (1-2um?) / (1+2um), (D14)

(N'/N) = (0/2) [20(1+1) £ (1+2m)] / (1+2un) (D15)

and (NN)= (/2 [2p(1+n) F (1421] / (142un). (D16)
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